3.9.41 \(\int \frac {\sqrt {a+b \sec (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [841]

3.9.41.1 Optimal result
3.9.41.2 Mathematica [C] (warning: unable to verify)
3.9.41.3 Rubi [A] (verified)
3.9.41.4 Maple [C] (verified)
3.9.41.5 Fricas [F(-1)]
3.9.41.6 Sympy [F]
3.9.41.7 Maxima [F]
3.9.41.8 Giac [F]
3.9.41.9 Mupad [F(-1)]

3.9.41.1 Optimal result

Integrand size = 25, antiderivative size = 237 \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {b \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {a \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}+\frac {\sqrt {a+b \sec (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

output
b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/ 
2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)/d/cos(d*x+c)^ 
(1/2)/(a+b*sec(d*x+c))^(1/2)+a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/ 
2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d* 
x+c))/(a+b))^(1/2)/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+sin(d*x+c)*(a 
+b*sec(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)-(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1 
/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*cos(d* 
x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/d/((b+a*cos(d*x+c))/(a+b))^(1/2)
 
3.9.41.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 32.38 (sec) , antiderivative size = 33693, normalized size of antiderivative = 142.16 \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Result too large to show} \]

input
Integrate[Sqrt[a + b*Sec[c + d*x]]/Cos[c + d*x]^(3/2),x]
 
output
Result too large to show
 
3.9.41.3 Rubi [A] (verified)

Time = 2.44 (sec) , antiderivative size = 275, normalized size of antiderivative = 1.16, number of steps used = 25, number of rules used = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.000, Rules used = {3042, 4752, 3042, 4342, 25, 3042, 4597, 3042, 4346, 3042, 3286, 3042, 3284, 4349, 3042, 4343, 3042, 3134, 3042, 3132, 4345, 3042, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+b \sec (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 4342

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \int -\frac {a-a \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}dx+\frac {\sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{d}-\frac {1}{2} \int \frac {a-a \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{d}-\frac {1}{2} \int \frac {a-a \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )\)

\(\Big \downarrow \) 4597

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (a \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}}dx-a \int \frac {1}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}dx\right )+\frac {\sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (a \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-a \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {\sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 4346

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {a \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {\sec (c+d x)}{\sqrt {b+a \cos (c+d x)}}dx}{\sqrt {a+b \sec (c+d x)}}-a \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {\sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {a \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {b+a \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{\sqrt {a+b \sec (c+d x)}}-a \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {\sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 3286

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {\sec (c+d x)}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \sec (c+d x)}}-a \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {\sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\frac {b}{a+b}+\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \sec (c+d x)}}-a \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {\sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 3284

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {2 a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}-a \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {\sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 4349

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {2 a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}-a \left (\frac {\int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}}dx}{a}-\frac {b \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}}dx}{a}\right )\right )+\frac {\sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {2 a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}-a \left (\frac {\int \frac {\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}-\frac {b \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\right )\right )+\frac {\sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 4343

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {2 a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}-a \left (\frac {\sqrt {a+b \sec (c+d x)} \int \sqrt {b+a \cos (c+d x)}dx}{a \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b}}-\frac {b \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\right )\right )+\frac {\sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {2 a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}-a \left (\frac {\sqrt {a+b \sec (c+d x)} \int \sqrt {b+a \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b}}-\frac {b \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\right )\right )+\frac {\sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 3134

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {2 a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}-a \left (\frac {\sqrt {a+b \sec (c+d x)} \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}dx}{a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\right )\right )+\frac {\sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {2 a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}-a \left (\frac {\sqrt {a+b \sec (c+d x)} \int \sqrt {\frac {b}{a+b}+\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\right )\right )+\frac {\sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 3132

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {2 a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}-a \left (\frac {2 \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\right )\right )+\frac {\sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 4345

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {2 a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}-a \left (\frac {2 \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {1}{\sqrt {b+a \cos (c+d x)}}dx}{a \sqrt {a+b \sec (c+d x)}}\right )\right )+\frac {\sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {2 a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}-a \left (\frac {2 \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {1}{\sqrt {b+a \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \sqrt {a+b \sec (c+d x)}}\right )\right )+\frac {\sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 3142

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {2 a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}-a \left (\frac {2 \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}}dx}{a \sqrt {a+b \sec (c+d x)}}\right )\right )+\frac {\sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {2 a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}-a \left (\frac {2 \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{a \sqrt {a+b \sec (c+d x)}}\right )\right )+\frac {\sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 3140

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{d}+\frac {1}{2} \left (\frac {2 a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}-a \left (\frac {2 \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {2 b \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{a d \sqrt {a+b \sec (c+d x)}}\right )\right )\right )\)

input
Int[Sqrt[a + b*Sec[c + d*x]]/Cos[c + d*x]^(3/2),x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(((2*a*Sqrt[(b + a*Cos[c + d*x])/(a 
+ b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(d*Sqr 
t[a + b*Sec[c + d*x]]) - a*((-2*b*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Ellip 
ticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(a*d*Sqrt[a + b*Sec[c 
 + d*x]]) + (2*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d* 
x]])/(a*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]])))/2 + (Sq 
rt[Sec[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/d)
 

3.9.41.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3286
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt 
[c + d*Sin[e + f*x]]   Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/(c + 
 d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]
 

rule 4342
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[-2*d*Cos[e + f*x]*Sqrt[a + b*Csc[e + f*x]]*((d* 
Csc[e + f*x])^(n - 1)/(f*(2*n - 1))), x] + Simp[d^2/(2*n - 1)   Int[(d*Csc[ 
e + f*x])^(n - 2)*(Simp[2*a*(n - 2) + b*(2*n - 3)*Csc[e + f*x] + a*Csc[e + 
f*x]^2, x]/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] & 
& NeQ[a^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]
 

rule 4343
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)], x_Symbol] :> Simp[Sqrt[a + b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*S 
qrt[b + a*Sin[e + f*x]])   Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; FreeQ[{a 
, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4345
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[Sqrt[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/S 
qrt[a + b*Csc[e + f*x]])   Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; FreeQ[ 
{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4346
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_. 
) + (a_)], x_Symbol] :> Simp[d*Sqrt[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x 
]]/Sqrt[a + b*Csc[e + f*x]])   Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f*x]] 
), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4349
Int[1/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_ 
.) + (a_)]), x_Symbol] :> Simp[1/a   Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Cs 
c[e + f*x]], x], x] - Simp[b/(a*d)   Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Cs 
c[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4597
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Simp[C/d^ 
2   Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[A 
Int[1/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, 
b, d, e, f, A, C}, x] && NeQ[a^2 - b^2, 0]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
3.9.41.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 8.00 (sec) , antiderivative size = 995, normalized size of antiderivative = 4.20

method result size
default \(\text {Expression too large to display}\) \(995\)

input
int((a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/d/((a-b)/(a+b))^(1/2)*(-EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d 
*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/ 
2)*(1/(cos(d*x+c)+1))^(1/2)*a*cos(d*x+c)^3+EllipticE(((a-b)/(a+b))^(1/2)*( 
-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(c 
os(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*b*cos(d*x+c)^3+2*EllipticPi(( 
(a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1 
/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1 
/2)*a*cos(d*x+c)^3-2*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c) 
),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1 
/(cos(d*x+c)+1))^(1/2)*a*cos(d*x+c)^2+2*EllipticE(((a-b)/(a+b))^(1/2)*(-co 
t(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos( 
d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*b*cos(d*x+c)^2+4*EllipticPi(((a- 
b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2) 
)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2) 
*a*cos(d*x+c)^2-EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-( 
a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos 
(d*x+c)+1))^(1/2)*a*cos(d*x+c)+EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+ 
csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1) 
)^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*b*cos(d*x+c)+2*EllipticPi(((a-b)/(a+b))^( 
1/2)*(-cot(d*x+c)+csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*(1/(a+...
 
3.9.41.5 Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(3/2),x, algorithm="fricas")
 
output
Timed out
 
3.9.41.6 Sympy [F]

\[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\sqrt {a + b \sec {\left (c + d x \right )}}}{\cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate((a+b*sec(d*x+c))**(1/2)/cos(d*x+c)**(3/2),x)
 
output
Integral(sqrt(a + b*sec(c + d*x))/cos(c + d*x)**(3/2), x)
 
3.9.41.7 Maxima [F]

\[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {\sqrt {b \sec \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(3/2),x, algorithm="maxima")
 
output
integrate(sqrt(b*sec(d*x + c) + a)/cos(d*x + c)^(3/2), x)
 
3.9.41.8 Giac [F]

\[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {\sqrt {b \sec \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(3/2),x, algorithm="giac")
 
output
integrate(sqrt(b*sec(d*x + c) + a)/cos(d*x + c)^(3/2), x)
 
3.9.41.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}}{{\cos \left (c+d\,x\right )}^{3/2}} \,d x \]

input
int((a + b/cos(c + d*x))^(1/2)/cos(c + d*x)^(3/2),x)
 
output
int((a + b/cos(c + d*x))^(1/2)/cos(c + d*x)^(3/2), x)